IMPROVE implementa un sistema predittivo che ana- lizza dati da Controller Logici Programmabili (PLC) mediante un'architettura di API e middleware interoperabile, arricchita dall'integrazione di Fiware e algoritmi ML per un approccio proattivo alla gestione operativa. Gli elementi chiave: recupero dei dati tramite API e integra- zione con PLC; piattaforma interoperabile con Fiware; gestione dei dati con backend e implementazione di logiche dinamiche; definizione dei canali informativi e implementazione di logiche di controllo; integrazione di algoritmi di machine learning; gestione degli alert e presentazione dei dati; flessibilità nei dati di input.
IMPROVE addresses the development of Machine Learning models and technological solutions to support predictive maintenance and sustainability in the manufacturing industry.
Manufacturing environments rely on complex machinery and specialized equipment that require regular maintenance to ensure optimal performance.
By leveraging machine learning algorithms for predictive maintenance, companies can shift to proactive maintenance strategies, minimizing downtime and enhancing the efficiency of their operations.
The main objective of the project is to prevent failures and degradation in industrial equipment, optimizing reliability, resource use, and reducing the company’s carbon footprint.
The solution will consist of a predictive system that analyzes PLC data through a modular and interoperable architecture, integrating Fiware and machine learning for smart and adaptive operational management.
Key challenges addressed:
The final result will be the release of an alpha version of the integrated platform in a real-world production environment.
Evaluation parameters for the alpha version:
KEY FIGURES
RESEARCHERS INVOLVED
NEW HIRES EXPECTED
PROJECT DURATION
NUMBER OF WORK PACKAGES (WPS)
STARTING TRL
FINAL TRL
Project n.: PE_00000004
MADE IN ITALY CIRCOLARE E SOSTENIBILE
Tax Code. 97931690156
Registered headquarters Piazza Leonardo da Vinci, 32, 20133 Milano
Operative headquarters Via Copernico, 38, 20125 Milano | Edificio C – Piano 1
Southern office Corso Nicolangelo Protopisani, 70, 80146 Napoli | Laboratorio Ricreami CESMA – Università degli Studi di Napoli Federico II